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A Bonhoeffer-van der Pol system is analyzed in the range of parameters where the attractor is a focus.
The system’s responses to a single pulse stimulus applied at different points along a “hidden structure”
are used to construct a one-dimensional map from which the system’s responses to pulse train stimula-

tions are obtained.
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I. INTRODUCTION

The main concepts and the theoretical framework of
biological oscillations have been extensively developed in
recent years. These oscillations are analyzed by the limit
cycle solutions of nonlinear differential equations. Since
limit cycle solutions are periodic (with a time period T),
the phase along the cycle is the fundamental time
measuring property. The understanding of this phase
and of its resetting following a perturbation constituted a
major area of research [1] in nonlinear oscillators, one
which had remarkable success in explaining numerous re-
lated biological phenomena.

There are biological problems, such as the response of
a nerve axon to the passage of information, which can be
analyzed by similar nonlinear equations but in a region
where their solutions have a different character. In this
region the solutions approach a final stable point, a focus.
Since in this case no periodicity exists, the notions phase,
phase resetting, etc. lose their meaning, and the theoreti-
cal framework mentioned above cannot be implemented.

In this paper we develop concepts and a framework for
this region of solutions for a specific nonlinear equation
(namely, the Bonhoeffer—van der Pol one). The use of
this framework is then demonstrated in the analysis of
the response of a nerve axon to a train of pulses given its
response to a single pulse. The same method can be used
in general to analyze other equations and systems where
the differential equations are unknown but with similar
characteristics (as was done in the limit cycle region).

The information passage through an axon can be
modeled by a set of nonlinear differential equations. One
of the best fitting sets is the well-known Hodgkin-Huxley
[2] (HH) one. A simple approximation of a set of two
equations is the Bonhoeffer—van der Pol system [3]
(BVP), which retains a large portion of the topological
features of the HH set. The parameters’ values used for
its neurophysiological applications restrict the phase
space of the set to the following main mathematical
characteristics: (a) There is only one attractor, in the re-
gion of interest, which is a focus. (b) The approach to the
focus occurs along a hidden structure (HS), which is
spiral in shape. (c) The flow to the focus from any initial
point firstly approaches the HS and then continues along-
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side it. (d) There exists a specific curve [3-5] in phase
space [see Fig. 1(a) below] called the separatrix, dividing
the flow trajectories towards the HS, such that points on
one side of the separatrix flow to one branch of the spiral
while those on its other side flow to another branch. This
feature provides a qualitative description of the “thresh-
old mechanism” for a single pulse response of the physio-
logical system. This mechanism is the well-known exper-
imental phenomenon that pulses of amplitudes below a
certain threshold value A4, fail to cause the axon to
transport information, while pulses of the same duration
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FIG. 1. The hidden structure and the separatrix, 4,=0.2. (a)
Global behavior—the hidden structure for 0<7=25. (b) En-
larged near-focus neighborhood.
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with amplitudes higher than A4, do succeed in achieving
it.

For most of the applications, a crossing of the separa-
trix which causes a large excursion of the trajectory in
phase space, is considered to be a positive output (denot-
ed by “1”) while a noncrossing event is looked upon as a
negative one (denoted by “0’). As we show below, this
causes a distinction between a phase periodicity and an
output periodicity for the HS case.

Biologically, an important feature of the system (axon),
is its response to a train of pulses [6]. Such a train of
pulses is characterized by two variables: the pulse
strength S (given by its area), and the time interval T be-
tween consecutive pulses. Changing these variables, the
global structure of the responses shows regions of phase
locking and chaos. This global behavior was demonstrat-
ed recently both experimentally for a squid axon [7] and
theoretically (or rather numerically) for the BVP set [4].
A somewhat similar behavior was obtained for the limit
cycle case above a certain stimulus amplitude [8].
Mathematically, there are differences between the limit
cycle and the HS cases. The main difference is derived
from the limit cycle itself and causes every result there to
be defined modulo the cycle period T; for the HS case,
on the other hand, time increases monotonically to
infinity as we approach the focus and no T, is defined (see
a consequence which emphasizes this point in Sec. IV).

Since time along the HS is not defined modulo T, and
is therefore not a phase, there exists no phase resetting
response curves for this case. In the present paper we
concentrate on the issue of defining and calculating the
values of a similar relation, which we term a time reset-
ting response curve (TRC). In a manner similar to the
one used in the limit cycle case, we next show how to use
the TRC to construct a one-dimensional (1D) map that
gives the evolution of the times of kicks at different
points along the HS. Iterations of this map are then
shown to yield the system’s dynamics under a train of
pulses which are then compared with the direct integra-
tion of the differential equations.

As in the limit cycle case, this 1D map can be an ex-
tremely useful analytical tool. Using mapping theory
methods for the limit cycle case (and for systems where
no differential equation is known but which are supposed
to be in a limit cycle situation), a better understanding of
the biological systems has been gained [9]. We expect
similar benefits for the HS case.

II. THE MODEL

The Bonhoeffer—van der Pol system is given by
3
x=x—x7—y+1(t), (1)

y=c(x+a—by). )

In the neurophysiological application x is the axon’s
membrane potential, y is the refractivity, I(¢) is the input
current, and a, b, and ¢ are constants representing the
membrane radius, the specific membrane fluid resistivity,
and the temperature factor, respectively. In this paper

1573

we use similar values to those of Ref. [10], namely a=0.7,
b=0.8, and ¢=0.1. Also, for a pulse train forcing

I()=Ag+ A4, S 6t+d—mT)—6(t—d—mT), ()

m=0

where 6(¢) is the Heaviside step function, 4,=0.2 and
2d=0.3 (the pulse width).

In order to characterize the hidden structure, initial
points were chosen at different positions in phase space
and their time evolutions under Egs. (1) and (2) with
I(t)= A, (no forcing) were calculated. Having obtained
the HS, we located the point on its spiral section with
minimum y and chose the point on its right-hand branch
with the same y as the time origin [7=0; see Fig. 1(a)].
Starting from this point, the flow occurs exactly along the
HS. Each point on the HS is now characterized by the
time interval (7) between zero and the time of arrival to
this point (Fig. 1). Several points are to be noted.

(a) As the spiral radius decreases, the velocity along the
HS obviously becomes smaller.

(b) The velocity is higher along the HS sections which
are approximately parallel to the x axis than along the
sections which are approximately parallel to the y axis.

(c) As the focus is approached, the time intervals need-
ed to travel from, say, a point of minimum y to a point of
maximum y converge to some constant value [87~ 10 in
Fig. 1(b)]. This can easily be understood by linearizing
Egs. (1) and (2) around the focus (xq,y,):

x=x,+¢,
4)
y=yotn

for small £ and 7. Recalling that X =y=0 at the focus,
this linearization yields

E=(1—-x})E—m,
n=c(§—bn) .

Let the eigenvalues of the Jacobian of Eq. (5) be
A=—atiw. For the parameters’ values (a,b, etc.) used
here, we have x,= —1.069 and (y,= —0.462) which pro-
vide @=0.111 and ®=0.314. Thus, the above mentioned
time intervals approach 7/w=10—the numerical value
obtained.

(5)
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FIG. 2. The structure of the separatrix (heavy line) given as
the inverse time contraction of several trajectories ( 4, =0.2).
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We have thus established a one to one correspondence
between points on the HS and points on the positive time
axis, which we define as the ““internal time” 7. To obtain
the separatrix [3] of Fig. 1(a), we took several initial
points close to and within the HS boundaries and solved
Egs. (1) and (2) for 4, =0 (no pulses) with negative time.
Results are shown in Fig. 2. The separatrix is seen to ex-
ist only to the right and bottom of the focus and to dwin-
dle off for high values of y. In the region called “no
man’s land” by FitzHugh [3] (for y 20.5), the separatrix
is no longer discernible. We have to bear in mind that
the separatrix is never a clear cut line such that points to
its right behave completely differently than points to its
left. Rather it can be looked upon as the line of max-
imum slope of the time excess (see Sec. III).

111. THE TIME EXCESS AND THE TRC

For each point P, along the HS, the time excess for a
single pulse stimulus was calculated as follows: starting
at P, as initial condition, Egs. (1) and (2) were integrated
assuming a single pulse of magnitude 4, at Py, i.e,,

I(t)y=Ay+ A4,[6()—6(¢t —2d)] . (6)

The output is the trajectory from P, with a pulse. This
trajectory eventually reapproaches the HS. We measured
the distance of the P, trajectory from the HS, and when
it became less than a prescribed tolerance €, we marked
its position P, (i.e., P, almost completely returned to the
HS), and the time elapsed t,. Had we started from P,
along the HS (namely for 4, =0) we would have reached
P, after a time interval r,. We define the time excess as

SAI(PI):tl—IZ . (7)

It measures the amount of time lost (or gained if 6 <0) by
adding a pulse of height A, (or of strength S =2d 4,) at
P,.

This definition of the time excess holds whenever P,
returns to the HS. It should be noted, however, that the
separatrix which controls this return, exists only outside
the inner spiral portion of the HS. Thus, if P, enters the
inner spiral zone before returning to the HS, it will create
its own spiral which converges to the same focus but at
no time merges with the original one (continuation of the
HS). In this case the time excess is defined as follows:
after a reasonable transient period the first minimum on
the new spiral is defined as P,, and the closest minimum
to P, on the HS (of the two possible ones) provides ¢,.

A typical time excess map is given in Table I. The
points along the HS are characterized by their 7 values
and the pulse heights—by 4,/A4,,. The range of
A,/ A, values used in Table I is between 0.6 and 1.8,
which is in accordance with the investigated values
[4,6,7]. Lower values are biologically unimportant since
no positive response is obtained there. In comparison,
for the limit cycle case, even very small pulse amplitudes
are interesting both theoretically (Arnold tongues, etc.)
and experimentally.
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TABLE I. Time excess map. 8(7) is calculated along the HS
A,/4;4,=0.6,09,1.2,1.5,and 1.8.

T 0.6 0.9 1.2 1.5 1.8
2 0. —0.05 —0.05 —0.05 —0.10
4 —0.05 —0.05 —0.10 —0.10 —0.15
6 0.15 0.20 0.20 0.25 0.25
8 0.70 0.90 1.10 1.20 1.35
10 0.35 0.55 0.85 1.10 1.45
12 0.05 0.10 0.10 0.15 0.15
14 0.10 0.10 0.15 0.20 0.20
16 0.10 0.15 0.25 0.30 0.35
18 0.20 0.25 0.35 0.45 0.60
20 0.30 0.50 0.70 0.90 1.10
22 0.65 1.05 1.45 1.90 240
24 1.50 2.40 3.30 4.30 5.40
26 —16.43 —14.23 7.30 8.85 12.65
28 —10.08 —9.18 12.30 32.75 30.75
30 —6.18 14.80 34.95 32.90 32.15
32 16.40 20.75 35.45 34.40 33.85
34 18.65 39.50 37.00 36.20 35.70
36 20.40 41.30 38.90 38.10 37.65
38 21.85 45.30 41.00 40.15 39.65
40 23.30 26.45 43.35 42.25 41.70
42 24.95 27.15 45.75 44.40 43.80
44 26.90 28.80 48.00 46.50 45.85
46 29.05 30.85 50.05 48.55 47.90
48 31.20 33.20 51.90 50.50 49.90
50 33.35 35.60 53.70 52.45 51.85

Several interesting qualitative conclusions can be
gleaned from the table and from Fig. 3.

(1) For small 7’s (points on the right branch of the HS),
§ is small but negative. It means that it is faster to go
from a to ¢ through b [Fig. 3(a)] than directly along the
HS. Apparently, the topographical slope along the b-c
route is much higher than the one along the ravine a —c.

(2) For P, close to the top of the HS, the return to the
latter is very slow. Thus starting from, say, d or e, the
flow is parallel to the HS (at some distance away) and the
return occurs only after reaching the left side of the HS.
This causes a relatively high & values at 7=9. For higher
values, say 7~10-12, P, is on top of the HS and the re-
turn occurs almost exactly along the HS (i.e., smaller J).

(3) For P, on the left side of the HS (r~between 13
and 25), § steadily increases, which implies that the slope
along fgh, say, is not as large as that along abc.

(4) For specific A,/ Ay, values (see, for example, Table
I, A,/A,;=0.9), a resonance effect occurs. We define
here as resonance a large gain (or loss) of time due to
geometrical effects. These are described in Fig. 3(b) for
small values of 4,/4,, (=0.4,0.6): the pulse transfers a
point on the HS to a location close enough to a later posi-
tion on the HS, thus gaining time (8§ <0).

(5) The main feature of separatrix crossing can be seen,
e.g., at point (i) (7=~21): for small 4,/ A4y, the pulse is
not strong enough to reach the separatrix and hence the
return is relatively short timed (even though it is folded
upon itself). For larger 4,/ Ay, values the return is done
by an excursion through the right branch of the HS, re-
sulting in a large increase of §. It is to be noted, however,
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FIG. 3. Return to the HS. (a) Pulses (of different strengths)
are applied at a, d, ¢, etc. At i, a weak pulse returns right back
to the HS while a strong one is shown to have crossed the
separatrix and returned to the HS near c. (b) Resonance
behavior. Pulses of 4, =0.4 and 0.6 are shown to have gained
significantly in time.

that the increase of 6 as a function of A4,/A4,, for the
same 7 is not a discontinuous one. The separatrix can
therefore be defined only as the point where the slope of 8
is a maximum.

(6) For sufficiently large 4,/ A,, and for P, within the
inner spiral, 8(7) increases almost linearly. In Table I
this effect holds for all 4,/ A, provided that 7 exceeds
33. This can be explained as follows (Fig. 4): A
sufficiently large pulse transfers all points with 7 above
some 7, into the same region. Therefore, the further in-
side in the spiral the initial point P, is, the larger is the
time excess.

For each point P,, characterized by 7, we have thus
obtained the time excess 8, ,4 (7). The eventual long

time behavior of its trajectory could be obtained by start-
ing on the HS with no forcing at

T=7—6(1) . (8)

This is the time-resetting curve (TRC). For each point it
describes the apparent point of initiation on the HS
which would give a similar asymptotic behavior when un-
forced.

Four examples of graphs of the time excess and the
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FIG. 4. Explanation of the linear increase of 8(7) for large 7.
Pulses applied at a, b, and c all return approximately to the
same location.

TRC are given in Fig. 5. These should be compared to
the appropriate graphs for a forced limit cycle case (e.g.,
Fig. 3 of Ref. [8]). Note that in a repetitive operation
(e.g., under a specific train of pulses), following a tran-
sient period, the TRC map becomes one to one which is
very similar to the limit cycle case. The essential
difference, however, is that the domain (and range) of this
map is not constant as in the limit cycle case, but depends
on the stimulus.

IV. PERIODIC STIMULATION

For a pulse train stimulation [Eq. (3)], Egs. (1) and (2)
can be integrated directly to yield the global structure of
responses which contains phase locked regions of very
specific types [n/(n+1),n/(2n +1)] and chaotic re-
gions [10] of the intermittency type.

An important point worth mentioning here is the basic
difference between the HS and the limit cycle cases for
long intervals (T) between consecutive pulses. For the
HS case, beyond a certain value of T, the response is al-
ways “1;” that is, the system, having had enough time to
relax, sees each pulse as a single stimulus. On the other
hand, for the limit cycle case, there is a repetition of the
bifurcation map each T,, where T is the limit cycle
period. Thus, e.g., if for T =T, and for a certain 4, the
system is in a “1” region for the HS (or an equivalent
“1:1” behavior for the limit cycle), for T=T,+ T, and
for the same A,, the HS system would still be in a “1”" re-
gion, while the limit cycle system would move into a
“1:2” region.

Here we wish to use the TRC of Sec. III to generate a
map that could be exercised to obtain the pulse train
response from the single pulse one. For the limit cycle
case such a procedure has been studied extensively since
1964 [11].

The idea is to connect the internal time along the HS,
when the nth, say, stimulus occurred (7, ), to the internal
time of occurrence of the previous stimulus (7, _;). The
input time interval between two consecutive pulses is 7,
and we assume that T is large enough for the trajectory
to have almost completely returned to the HS. For a
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very fast pulse repetition rate (very small T), a completely
different behavior is obtained.

At 7,_, the system suffered a stimulus which caused
its internal time to be reset to 7, _, [Eq. (8)]. The next

pulse occurs one time interval 7 later, hence
Ty :T:,_1+T, or
Tn=f(Tn71)=T,,_1_5(Tn_1)+T. (9)

This is the desired 1D map. It controls the pulse train
response, as we will presently demonstrate.

In the following discussion we distinguish between two
cases: mode locking and chaotic response.

A. Mode locking

A necessary condition for a periodic output of any type
is that a specific iteration of the map [Eq. (9)] will satisfy
(phase periodicity)

Tntp=Tn > (10)

Tn+m;&7-n’ m <P (11)
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for some integers n and p. Such a period-p output does
not completely define the response. In order to under-
stand this point consider a period-3 case. For the neuro-
physiological result this case can be characterized by two
distinct sequences of pulse-outputs: “100” and ““110,”
depending on the number of times (one or two, respec-
tively), during a complete period of 3T, that the separa-
trix has been crossed and a large excursion around the
whole of the HS has occurred. These distinct sequences
are called output periodicities. Note that a “111” case is
excluded by Eq. (11), while “000” is always regarded as a
zero response. When the system is in a zero response re-
gion, the actual phase space trajectory is usually periodic.
The radius of its shape, however, is smaller than the
outer radius of the HS. Although such movements are
usually without any biological significance, they are topo-
logically interesting since they are specific to the spiral
HS case with no counterpart for that of the limit cycle.
Since a “10” response is the only period-2 case possi-
ble, we begin by analyzing the conditions for this case.
The second iteration f*(7,) was calculated for a specific
A,/ Ay, value and for several values of T. The limits of

FIG. 5. Time excess [6(7)] and time reset-
ting [7—8(7)] curves. A,=0.2, and
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FIG. 6. Mode-locked regions (A4,=0.2). The calculated
boundaries are obtained from the differential system [Egs.
(1)-(3)], while the predicted ones are derived from the map [Eq.
9)].

the interval of T values for which a solution to
f¥r,)=r, is possible [but no solution of f(7,)=7,]
mark the predicted limits of the “10” region for this
A,/Ay value. Once the “10” region was determined,
other regions such as “100,” “110,” etc. were similarly
calculated. Note that a period-3 solution occurring to
the right of the “10” region implies a ““110” case, while a
solution of the same periodicity appearing on the left of
the “10” region signals a “100” case. Results are shown
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FIG. 7. Phase-space pulse positions. 4,=0.2, 4,/ A,,=1.6.
The predicted positions (+) are obtained by Eq. (9) and Fig. 1,
and the calculated ones (O) by Egs. (1)-(3). (a) T=12, “100”
case. (b) T=30, “110” case.
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FIG. 8. Phase-space appearance of a chaotic trajectory.
Ap=0.2, 4,/A,=1.3,and T=15.65.

in Fig. 6, where the different predicted [i.e., obtained
from Eq. (9)] zones are compared with those calculated
directly from the differential system [Egs. (1-3)]. The
agreement is excellent and depends only on the accuracy
of the numerical calculations.

Since Eq. (9) predicts the exact 7’s where the stimuli
occur (following a certain transient time), and since these
7 are in a one- to- one correspondence with positions
along the HS (Sec. II), these positions can be compared
immediately with the ones obtained directly by Egs.
(1)-(3). Two such comparisons are shown in Fig. 7. The
cases A,/Ay=1.6 and T=12 and 30, shown in Figs.
7(a) and 7(b) respectively, are—according to Fig. 6— in
the “100” and “110” zones. We thus calculated the exact
solutions to f3(r,)=7, for both cases and compared
them to the phase-space solutions of Egs. (1)-(3). Once
again, there is a very good agreement.

B. Chaotic response

For some regions of the A,/A4y—T plane, chaotic
behavior has been observed both experimentally for the
squid axon [6,7] case and theoretically for the BVP [4].
A typical chaotic phase-space response is shown in Fig. 8.
In order to obtain the chaotic bifurcation scheme from
the time excess map, we iterated Eq. (9) several hundred

t (in arb. units)

T (in arb. units)

FIG. 9. Bifurcation diagram for 4,=0.2, 4,/ A4, =1.3. Itis
obtained by recording several hundred consecutive iterations of
Eq. (9) after deleting the first transient ones.



1578

times, following a transient period, at a fixed value of
A,/ Ay, (=1.3) and for a whole range of T values. The
results are shown in Fig. 9. Note that the values plotted
are those of 7,’s, while had we used the differential sys-
tem these would have been x,’s or y,’s. The T values in
Fig. 9 traverse the range between “10°” and “10%.” The
onset of chaos at around 7=9.88 is achieved via a
period-doubling cascade, while the transition to “10*” at
around T=11.68 occurs abruptly. The overall behavior
is in good agreement with the results discussed in Ref.
[10].

V. CONCLUSIONS

A time-resetting curve method has been developed for
a system in the state where its attractor is a focus and the
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approach to the focus is via a hidden spiral structure.
This situation, being different topologically from the limit
cycle one which has been analyzed extensively hitherto,
shows some unique properties. We have demonstrated
the applicability of the method to the BVP system in the
range where it is used, e.g., for the analysis of the
response of an axon to a stimulation by a train of pulses.
Since the use of the mapping [Eq. (9)] makes the analysis
of mode locked and chaotic behaviors simpler, both qual-
itatively and quantitatively, than the original differential
equations, and since mapping techniques are the only
ones available in many experimental situations where no
differential equation is known, we hope that the TRC will
become a useful tool in the treatment of such systems,
much as its counterpart, the phase resetting curve
method, has become for problems of the limit cycle type.
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FIG. 8. Phase-space appearance of a chaotic trajectory.
Ay=02, 4,/4,=1.3,and T=15.65.
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FiG. 9. Bifurcation diagram for 4,=0.2, 4,/4,=1.3. Itis
obtained by recording several hundred consecutive iterations of
Eq. (9) after deleting the first transient ones.



